E-Paper ESP32 Driver Board

来自Waveshare Wiki 跳转至: 导航、搜索

支持型号

本Wiki主要介绍该产品的具体操作,如需获取该产品支持的墨水屏型号请前往 官网产品详情最底部获取

官网链接: https://www.waveshare.net/shop/e-Paper-ESP32-Driver-Board.htm

说明

参数、特点说明

自我介绍

我是电子墨水屏无线网络驱动板,我可以通过WiFi或者蓝牙从PC机或智能手机上获取图片信息,并将信息通过电子墨水屏显示出来。我支持Arduino开发,你可以像使用其它Arduino板一样使用我。

产品参数

■ WiFi 标准: 802.11b/g/n

■ 通信接口: SPI/IIC

■ 蓝牙标准: 4.2, 包含传统蓝牙(BR/EDR)和低功耗蓝牙(BLE)

■ 通信接口: 3-wire SPI、4-wire SPI(默认)

■ 工作电压: 5V

■ 工作电流: 50mA ~ 150mA

■ 外形尺寸: 29.46mm x 48.25mm

功能引脚

功能引脚	ESP32	描述
VCC	3V3	电源正(3.3V电源输入)
GND	GND	电源地
SCK	P13	SPI的CLK,时钟信号输入
DIN	P14	SPI的MOSI, 数据输入
CS	P15	片选,低电平有效
BUSY	P25	忙状态输出引脚 (表示忙碌)
RST	P26	复位,低电平有效
DC	P27	数据/命令,低电平表示命令,高电平表示数据

PS: 以上为板子固定连接, 无需用户额外操作

产品特点

- 板载 ESP32, 支持 Arduino 开发
- 提供安卓手机 APP 程序,可通过蓝牙 EDR 更新显示内容,方便使用
- 提供 HTML 上位机程序,可通过网页远程更新显示内容,方便集成到各种网络应用中
- 支持 Floyd-Steinberg 抖动算法,以获得更多的颜色组合,对原始图片进行更好的阴影渲染

- 支持多种常用图片格式(BMP、JPEG、GIF 和 PNG 等)
- 出厂内置电子墨水屏驱动程序(开源)
- 5V管脚支持3.6V到5.5V电压输入,可使用锂电池供电
- 提供完善的配套资料手册

产品应用

本产品配合墨水屏,适用于无线刷图的应用场景。

- 超市电子价签
- 电子名片
- 串口信息显示牌等

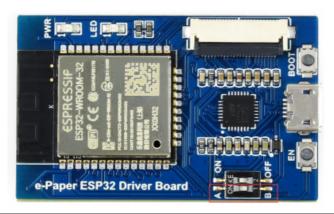
使用准备

硬件操作、环境搭建和程序说明等

硬件连接

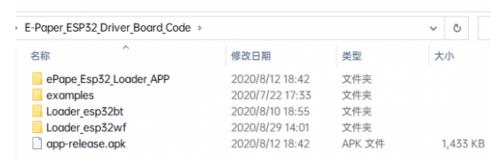
本产品出货的时候配有一个 ESP32 网络驱动板,一个转接板和 FFC 延长线。 使用的时候你可以直接将屏幕接入到驱动板,或者是通过延长线和转接板接入。

■ 将屏幕接入 ESP32 驱动板:


直接接入驱动板:

通过延长线接入:

■ 设置型号开关:根据使用的墨水屏型号设置1号开关,屏幕较多,如有未列出请优先使用 'A' 尝试,如果显示效果差或者无法驱动,请尝试切换开关



Trigger state	E-Paper
В	1.54inch e-Paper, 2.13inch e-Paper, 2.13inch e-Paper (D), 2.9inch e-Paper
	1.54inch e-Paper (B), 1.54inch e-Paper (C), 2.13inch e-Paper (B), 2.13inch e-Paper (C), 2.7inch e-Paper (B),
Α	2.9inch e-Paper (B), 2.9inch e-Paper (C), 4.2inch e-Paper (B), 4.2inch e-Paper (C), 5.83inch e-Paper (B), 5.83inch
	e-Paper (C), 7.5inch e-Paper (B), 7.5inch e-Paper (C)

- 开启串口模块:将2号开关拨动到"ON",此开关控制CP2102 (USB to UART模块)的供电。不需要使用时,您可以手动关闭使模块更加省电(如果2号开关处于OFF状态,则无法上传程序)
- 使用一条 micro USB 线将 ESP32 驱动板接入到电脑或者 5V 电源

下载例程

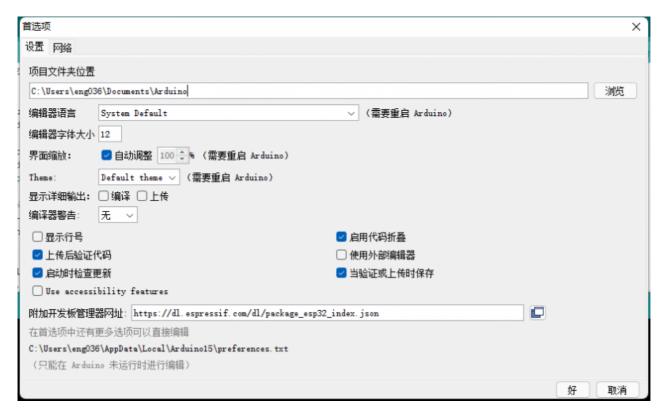
我们有提供本地、蓝牙、WiFi三种例程,本页面的"资料"标签内可以找到示例程序,或者点击 示例程序 下载将下载下来的压缩包解压出来,可以得到以下文件:

■ ePape Esp32 Loader APP: 蓝牙App源码 (Android Studio)

■ examples: 本地例程

Loader_esp32bt: 蓝牙例程Loader_esp32wf: WiFi例程

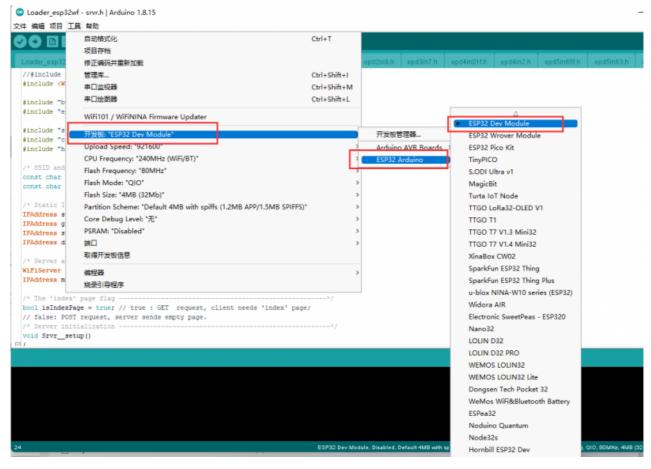
■ app-release.apk: 蓝牙例程App安装包


环境配置

■ 如果您电脑之前没有安装 Arduino IDE,或者 IDE 的版本比较老。建议到 Arduino 官方网站根据自己的系统下载最新的 IDE 并安装。

官方链接: https://www.arduino.cc/en/Main/Software

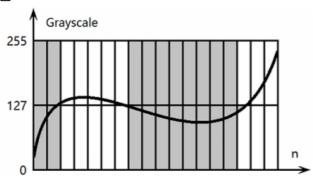
下载 ESP32 Dev Module 开发板管理工具:


■ 1.打开arduino软件的首选项,在附加开发板管理器网址中加入链接: https://dl.espressif.com/dl/package_esp32_index.json

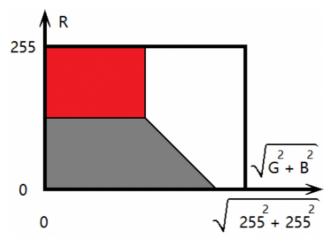
■ 2.添加完成后打开工具-> 开发板 -> 开发板管理工具, 手动搜索 "ESP32" 下载安装最新版本。

■ 3.等待安装完成后,可以在 IDE 的 Tools - Boards 里面找到 ESP32 Dev Module 的型号选项即可。

■ 若多次出现报错无法完成安装,请联系售后技术人员。


图像处理算法

在蓝牙和WiFi例程中,提供了两种图像处理算法,分别是 Level (色阶法) 以及 Dithering (抖动法)


色阶法

一张图像,我们可以把它划分为几个大的颜色域,图像上的每个像素点根据颜色跟这几个色域的趋近程度,被划分到这些颜色域中去。这种方法比较适用于颜色不多的图像,例如亮色或者三色的形状或者文字图像。以黑白红三色墨水屏为例,处理图像的时候我们希望把它处理成黑白红三色,因此对于一张图像来说,我们可以把图像的所有颜色划分三个大的颜色区域:黑色区域,白色区域,红色区域。

比如根据下图,如果灰度图中的某个像素点的值等于或者小于127的话,我们把这个像素点视为黑色像素,否则,就是白 色

对于彩色图来说,我们都知道RGB有三色通道,相对于红色通道来说,我们可以把蓝色和绿色统称为蓝-绿通道,或者是非红通道。根据下面的图,彩色图像上的某个像素点,如果它红色通道的值很高,但是蓝-绿通道的值很低的话,我们将它归为红色像素;如果说它红色通道和蓝-绿通道的值都很低的话,我们将它归为黑色像素;红色和蓝-绿通道值都很高的话我们把它归为白色。

算法中,对于颜色定义是根据RGB值以及预期颜色值的平方和的差值计算的。其中预期颜色值是指的像素点最趋近的那个颜色值,这些值被保存在 curPal 数组中。

```
// Returns the discrepancy between given (r, g, b)
// and available colors
function getErr(r, g, b, avlCol)
1
    r -= avlCol[0];
    g -= avlCol[1];
    b -= avlCol[2];
    return r*r + g*g + b*b;
1
// Returns the index of available color
// which has minimal discrepancy with the given one
function getNear(r,g,b)
{
    var ind=0:
    var err=getErr(r,g,b,curPal[0]);
    for (var i=1;i<curPal.length;i++)
         var cur=getErr(r,g,b,curPal[i]);
        if (cur<err) {err=cur;ind=i;}</pre>
    return ind;
```

抖动法

对于那些颜色比较多,或者渐变区域比较多的图像,上面的色阶法并不太合适,很多时候图像里面的渐变区域的像素可能跟所有颜色域都很接近,如果用色阶法的画就会让图像丢失很多图像细节。很多摄像头拍摄的图片,通过混合颜色的方法来绘画阴影和过度区域,这些图像中,渐变区域占了大部分

对于人眼来说,很容易把特别小的颜色混淆了,比如两种颜色红和蓝并列,如果把它缩小到足够小的手,在人眼看来会变成一种由红和蓝混合而成的颜色。人眼的缺陷意味着我们可以通过欺骗人眼,利用"混合"的方法来获取更多可以表现的颜色,抖动算法就是采用了这一种现象。

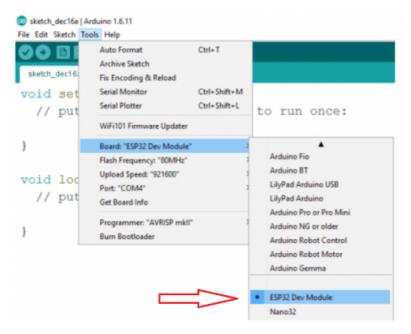
我们提供的例程中使用了Floyd-Steinberg 抖动算法-基于错误扩散 (由Robert Floy 和Louis Steinberg在1976年发表)。公式是根据下面的图像的方式进行错误扩散

X 就是错误 (原始颜色和灰度值 (颜色值) 之间的一个标量 (矢量) 差值), 这个错误会向右边, 右下, 下边, 和左下四个方向扩散, 分别以7/16, 1/16, 5/16和3/16的权重添加到这四个像素点的值中去。感兴趣的用户可以去了解该算法, 网络上有很多资源。

两种算法的处理效果比较

原图

"黑白色阶处理"和"多色色阶处理"



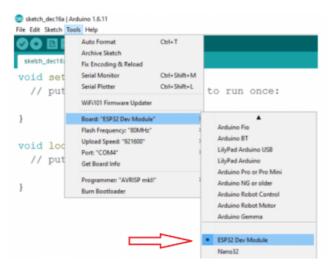
蓝牙例程

提供带安卓APP的蓝牙通信的例程

程序使用

- 打开Loader_esp32bt目录,双击Loader_esp32bt.ino文件打开Arduino工程
- 选择Tools->Boards->ESP32 Dev Module,并且选择好对应的串口: Tools->Port

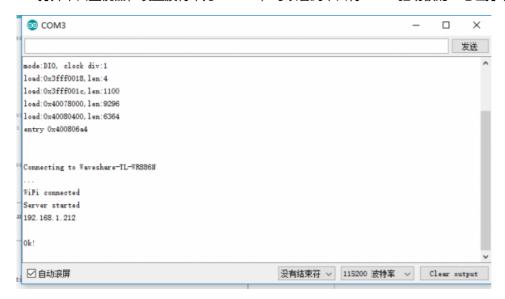
- 然后点击上传,把程序编译并下载到 ESP32 驱动板上面
- 手机安装并打开 APP:

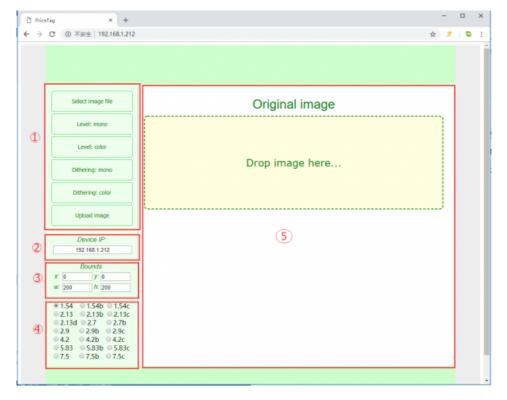

- APP 主页一共有五个按钮:
 - 连接蓝牙: 用来连接ESP32设备
 - 选择墨水屏型号:选择你接入到驱动板的墨水屏型号
 - 打开图像文件:点击可以选择手机里面的一张图片打开,必须线选择型号确定尺寸才能选择图片
 - 选择图片处理算法:由于手机中的图片并不一定符合墨水屏型号的需求,所以要先处理一下图片
 - 上传图片:将处理之后的图片上传到墨水屏,并刷新到屏幕上去
- 首先确保你已经打开手机蓝牙。点击 "连接蓝牙"->点击右上角的 "SCAN"进行蓝牙设备扫描。
- 找到ESP32设备,点击进行连接。如果你是第一次连接这个设备,会弹出配对信息,点击确认完成配对。(注意:如果设备没有进行配对,将无法正常上传图片,并且可能出现APP闪退的问题)
- 点击"选择墨水屏型号"选择你连接的墨水屏对应型号
- 点击 "打开图像文件"选择图库并打开一张图片,会根据上一步选择的型号出现矩形裁剪框,拖动裁剪到你想要的部分 即可
- 点击"选择图片处理算法"选择对应的处理算法, 并确认
 - 黑白色阶算法(将图片处理成黑白两色,并根据墨水屏分辨率切割图片大小)
 - 彩色色阶算法(将图片处理成多色,并根据墨水屏分辨率切割图片大小,只适用于多色墨水屏)
 - 黑白抖动算法 (将图片处理成黑白两色,并根据墨水屏分辨率切割图片大小)
 - 彩色抖动算法 (将图片处理成多色,并根据墨水屏分辨率切割图片大小,只适用于多色墨水屏)
- 点击"上传图像", 把处理过后的图像上传到墨水屏中显示

WiFi例程

提供带HTML上位机的WiFi例程

程序使用


- 进入Loader_esp32wf文件夹,双击Loader_esp32wf.ino文件打开工程
- 选择Tools->Boards->ESP32 Dev Module,并且选择好对应的串口: Tools->Port


■ 打开srvr.h文件,将ssid和password改成实际使用的WiFi用户名和密码

- 然后点击上传,把程序编译并下载到ESP32驱动板上面
- 打开串口监视器,设置波特率为115200,可以看到串口将ESP32驱动板的IP地址打印出来:

■ 电脑或者手机(注意电脑/手机接入的网络需要时跟ESP32接入的wifi是同一个网段的才可以)打开浏览器,在网址输入 栏输入ESP32的IP地址并打开,可以看到操作界面如下:

■ 整个操作见面分为五个区域:

■ 图像操作区域:

Select Image file: 点击在电脑或者手机里面选择一张图片

Level: mono: 黑白色阶图像处理算法

Level: color: 多色色阶图像处理算法 (只对多色屏幕生效)

Dithering: mono: 黑色抖动图像处理算法

Dithering: color: 多色抖动图像处理算法 (只对多色屏幕生效)

Update image: 上传图像

■ IP信息显示区域: 这里显示的是你当前连接的模块的IP地址信息

■ **图像大小设置区域**:这里x和y可以设置你要显示的起始位置,这个设置是相对于你选择的图片文件的,比如选择一张800x480的图片,但是连接的墨水屏是2.9寸的,这时候墨水屏并无法显示整张图片的信息,所以在选择图像处理算法的时候,算法会自动从左上角开始截取一部分图片传到墨水屏显示,这里设置x和y可以自定义截取的起始位置。w和h是当前墨水屏的分辨率大小。

注意:如果修改了x和y的指的话,需要重新点击一下处理算法生成新的图像

■ 型号选择区域: 这里可以选择你接入的墨水屏型号

■ 图像显示区域: 这里会显示你选择的图片以及处理之后的图像


■ PS:在上传图像的时候,底部会显示上传的数据进度

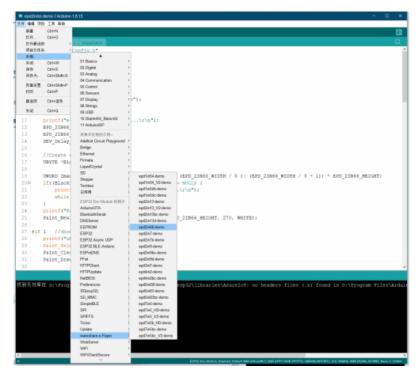
■ 区域①点击Select image file 选择一张图片,或者直接将图片拖拽至Original image的区域内

■ 区域④选择对应的墨水屏型号,例如: 1.54b

■ 区域①点击一种图像处理算法,例如: Dithering: color

■ 区域①点击Upload image将图片上传到墨水屏显示。

本地例程


提供基于ESP32的本地例程,无需WiFi、蓝牙和其他设备

程序使用

■ 进入 examples\ 目录,把整个 esp32-waveshare-epd 文件夹复制到处于" Arduino IDE首选项" -> "文件项目路径" -> "libraries" 文件夹中

■ 然后打开 Arduino IDE,在文件 - 示例中找到 wareshare-e-Paper,然后点击对应型号的示例程序

■ 点击上传, 打开串口监视器可以看到打印信息

资料

提供文档、程序、数据手册等全套资料

文档

- 用户手册
- 原理图
- 使用Photoshop制作散点图

视频

■ 演示视频 🖦

程序

■ 示例程序

ESP32资料

■ ESP32相关资料下载链接

驱动

- Window_CP2102驱动
- Mac_OSX_VCP驱动

FAQ

E-Paper ESP32 Driver Board常见问题与解答

问题: 2.13寸墨水屏 (2.13inch e-paper) 无法刷新,确认屏幕背面有没有V2标识,没有的话需要修改程序 如下部分

打开工程中的epd1in13.h,把如下值改成1

```
o 🔚 epd2in13.h🛛
           int EPD_Init_2in13()
       int EPD2in13V = 2
if(EPD2in13V = 2
                    Serial.print("\r\nEPD_Init_2in13 V1");
                    EPD_Reset();
                    EPD_Send_3(0x01, 249, 0, 0); // DRIVER_OUT!
EPD_Send_3(0x0C, 0xD7, 0xD6, 0x9D);// BOOSTER_SOI
   78
79
                    EPD_Send_1(0x2C, 0xA8); // WRITE_VCOM
EPD_Send_1(0x3A, 0x1A); // SET_DUMMY_1
    80
   81
82
                    EPD_Send_1(0x3B, 0x08);
                                                               // SET_GATE_T
                  EPD_Send_1(0x11, 0x03);
                                                             // DATA_ENTRY
    83
   84
                   EPD_lut(0x32, 30, &lut_full_2in13[0]);
   86
87
               } else {
                    Serial.print("\r\nEPD_Init_2in13 V2");
                    EPD_Reset();
```

问题: 1.54寸墨水屏 (1.54inch e-paper) 无法刷新,确认屏幕背面有没有V2标识,没有的话需要修改程序 如下部分

打开工程中的epd1in54.h,把如下值改成1

```
int EPD_Init_lin54()

int EPDLin54 - 2;

If(EPDLin54 - 1) {
    Serial.print("\r\nEPDlin54 v1");
    EPD_Reset();
    EPD_Send_3(0x01, 199, 0, 00);//DRIVER_OUTPUT_CONTROL: LO(EPD_EPD_Send_3(0x02, 0xb7, 0xb6, 0x9D);//BOOSTER_SOFT_START_CONTROL:
    EPD_Send_1(0x2C, 0xA8);//WRITE_VCOM_REGISTER: VCOM_7C
    EPD_Send_1(0x3A, 0x1A);//SET_DUMMY_LINE_EPRIOD: 4 dummy line:
    EPD_Send_1(0x3A, 0x1A);//SET_GATE_TIME: 2us per line
    EPD_Send_1(0x31, 0x03);//DATA_ENTRY_MODE_SETTING: X increment
```

问题: ESP32下载蓝牙例程,模块报错: "Guru Meditation Error: Core 0 panic'ed (LoadProhibited). Exception was unhandled." 且无法成功打开蓝牙,需要怎么解决?

下载Arduino-ESP32 支持包 ,并将压缩包里面的文件解压到 Arduino IDE 安装目录下的hardware\espressif\esp32 路径,选择"确定覆盖文件"(记得将原先文件备份),然后断电重新运行一次例程。(注意:如果在安装目录没有该路径,可以手动创建)

问题: 用Arduino下载ESP32程序有时成功,有时失败,怎么解决?

尝试降低波特率,可尝试调为115200,如下图所示 ENV | Arduino 1.8.9 File Edit Sketch Tools Help 90 BE Ctrl+T Auto Format Archive Sketch Fix Encoding & Reload rix Encoding & Reload Manage Libraries... Ctrl+Shift+I Serial Monitor Ctrl+Shift+M Serial Plotter Ctrl+Shift+L WiFi101 / WiFiNINA Firmware Updater 6 #includ Board: "ESP32 Dev Module" 7 #includ Upload Speed: "115200" 8 #includ Flash Frequency: "80MHz" • 115200 9 #includ Flash Mode: "QIO" 256000 10 #includ Flash Size: "4MB (32Mb)" Core Debug Level: "None" 512000 12 #includ Partition Scheme: "Default" 13 DHT12 d CPU Frequency: "240MHz (WiFi/BT)" 14 BMM150 PSRAM: "Disabled" 15 bmm150_ Port 16 Adafrui Get Board Info Burn Bootloader

问题: wifi例程上传正常,串口输出了ip地址,但是电脑输入IP地址无法访问,需要检查ip的网段与wifi的网段值一致,且IP不冲突

问题: 电脑识别不到驱动板, 先确认串口驱动是否已经安装, 再尽可能地更换USB线和USB接口尝试

mac串口驱动: https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip window串口驱动: https://www.silabs.com/documents/public/software/CP210x_Universal_Windows_Driver.zip

需要在出现Connecting...提示时,长按ESP32底板上的boot按键

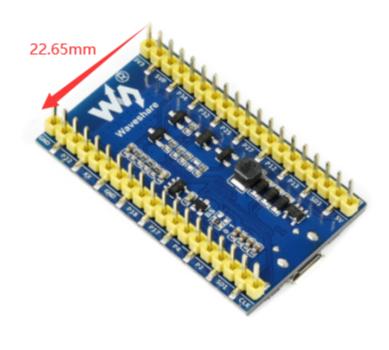
问题: 蓝牙例程卡在0%

需要确认硬件连接正确,并选择对应的墨水屏型号

问题: 上传程序,报错开发板不存在或为空,需要确认端口和开发板选择正确,需要确认硬件连接正确,并选择对应的墨水屏型号

选择端口和驱动板,如下图所示

问题: 开板管理器搜索不到esp32,需要在菜单栏:文件->首选项里填入esp32开发板管理网址 https://dl.espressif.com/dl/package_esp32_index.json (esp8266: http://arduino.esp8266.com/stable/package_esp8266com_index.json)


填入esp32开发板管理网址,如下图所示

问题: E-Paper ESP32驱动板A, B键的作用

问题: E-Paper ESP32驱动板J3 J4之间的间距是多少

间距是22.65mm

